

EO Datasets 3

EO Datasets aims to be the easiest way to write, validate and convert dataset imagery
and metadata for the Open Data Cube [https://github.com/opendatacube/datacube-core]

There are two major tools for creating datasets:

	DatasetAssembler, for writing a package: including writing the metadata
document, COG [https://www.cogeo.org/] imagery, thumbnails, checksum files etc.

	DatasetPrepare, for preparing a metadata document,
referencing existing imagery and files.

Their APIs are the same, except the assembler adds methods named write_* for writing new files.

Note

methods named note_* will note an existing file in the metadata, while write_* will write
the file into the package too.

Assemble a Dataset Package

Here’s a simple example of creating a dataset package with one measurement (called “blue”) from an existing image.

The measurement is converted to a COG [https://www.cogeo.org/] image when written to the package:

from eodatasets3 import DatasetAssembler

with DatasetAssembler(collection, naming_conventions='default') as p:
 p.product_family = "blues"

 # Date of acquisition (UTC if no timezone).
 p.datetime = datetime(2019, 7, 4, 13, 7, 5)
 # When the data was processed/created.
 p.processed_now() # Right now!
 # (If not newly created, set the date on the field: `p.processed = ...`)

 # Write our measurement from the given path, calling it 'blue'.
 p.write_measurement("blue", blue_geotiff_path)

 # Add a jpg thumbnail using our only measurement for the r/g/b bands.
 p.write_thumbnail("blue", "blue", "blue")

 # Complete the dataset.
 p.done()

Note

Note that until you call done(), nothing will exist in the dataset’s final output location. It is stored in a hidden temporary
folder in the output directory, and renamed by done() once complete and valid.

Writing only a metadata doc

(ie. “I already have appropriate imagery files!”)

Example of generating a metadata document with DatasetPrepare:

collection_path = integration_data_path

from eodatasets3 import DatasetPrepare

usgs_level1 = collection_path / 'LC08_L1TP_090084_20160121_20170405_01_T1'
metadata_path = usgs_level1 / 'odc-metadata.yaml'

with DatasetPrepare(
 metadata_path=metadata_path,
) as p:
 p.product_family = "level1"
 p.datetime = datetime(2019, 7, 4, 13, 7, 5)
 p.processed_now()

 # Note the measurement in the metadata. (instead of ``write``)
 p.note_measurement('red',
 usgs_level1 / 'LC08_L1TP_090084_20160121_20170405_01_T1_B4.TIF'
)

 # Or give the path relative to the dataset location
 # (eg. This will work unchanged on non-filesystem locations, such as ``s3://`` or tar files)
 p.note_measurement('blue',
 'LC08_L1TP_090084_20160121_20170405_01_T1_B2.TIF',
 relative_to_dataset_location=True
)

 # Add links to other files included in the package ("accessories"), such as
 # alternative metadata files.
 [mtl_path] = usgs_level1.glob('*_MTL.txt')
 p.note_accessory_file('metadata:mtl', mtl_path)

 # Add whatever else you want.
 ...

 # Validate and write our metadata document!
 p.done()

We created a metadata file!
assert metadata_path.exists()

Custom properties can also be set directly on .properties:

p.properties['fmask:cloud_cover'] = 34.0

And known properties are automatically normalised:

p.platform = "LANDSAT_8" # to: 'landsat-8'
p.processed = "2016-03-04 14:23:30Z" # into a date.
p.maturity = "FINAL" # lowercased
p.properties["eo:off_nadir"] = "34" # into a number

Note

By default, a validation error will be thrown if a referenced file lives outside the dataset (location),
as this will require absolute paths. Relative paths are considered best-practice for Open Data Cube
metadata.

You can allow absolute paths in your metadata document using a field on construction
(DatasetPrepare()):

with DatasetPrepare(
 dataset_location=usgs_level1,
 allow_absolute_paths=True,
):
 ...

Including provenance

Most datasets are processed from an existing input dataset and have the same spatial information as the input.
We can record them as source datasets, and the assembler can optionally copy any common metadata automatically:

collection = Path('/some/output/collection/path')
with DatasetAssembler(collection) as p:
 # We add a source dataset, asking to inherit the common properties
 # (eg. platform, instrument, datetime)
 p.add_source_path(level1_ls8_dataset_path, auto_inherit_properties=True)

 # Set our product information.
 # It's a GA product of "numerus-unus" ("the number one").
 p.producer = "ga.gov.au"
 p.product_family = "numerus-unus"
 p.dataset_version = "3.0.0"

 ...

In these situations, we often write our new pixels as a numpy array, inheriting the existing
grid spatial information of our input dataset:

Write a measurement from a numpy array, using the source dataset's grid spec.
p.write_measurement_numpy(
 "water",
 my_computed_numpy_array,
 GridSpec.from_dataset_doc(source_dataset),
 nodata=-999,
)

Other ways to reference your source datasets:

	As an in-memory DatasetDoc using p.add_source_dataset()

	Or as raw uuids, using p.note_source_datasets() (without property inheritance)

Creating documents in-memory

You may want to assemble metadata entirely in memory without touching the filesystem.

To do this, prepare a dataset as normal. You still need to give a dataset location, as paths
in the document will be relative to this location:

>>> from eodatasets3 import DatasetPrepare
>>>
>>> p = DatasetPrepare(dataset_location=dataset_location)
>>> p.datetime = datetime(2019, 7, 4, 13, 7, 5)
>>> p.product_name = "loch_ness_sightings"
>>> p.processed = datetime(2019, 7, 4, 13, 8, 7)

Normally when a measurement is added, the image will be opened to read
grid and size informaation. You can avoid this by giving a GridSpec
yourself (see GridSpec doc for creation):

>>> p.note_measurement(
... "blue",
... measurement_path,
... # We give it grid information, so it doesn't have to read it itself.
... grid=grid_spec,
... # And the image pixels, since we are letting it calculate our geometry.
... pixels=numpy.ones((60, 60), numpy.int16),
... nodata=-1,
...)

Note

If you’re writing your own image files manually, you may still want to use eodataset’s
name generation. You can ask for suitable paths from
p.names:

See the the naming section for examples.

Now finish it as a DatasetDoc:

>>> dataset = p.to_dataset_doc()

You can now use serialise functions on the result yourself,
such as conversion to a dictionary:

>>> from eodatasets3 import serialise
>>> doc: dict = serialise.to_doc(dataset)
>>> doc['label']
'loch_ness_sightings_2019-07-04'

Or convert it to a formatted yaml: serialise.to_path(path, dataset) or
serialise.to_stream(stream, dataset).

Avoiding geometry calculation

Datasets include a geometry field, which shows the coverage of valid data pixels of
all measurements.

By default, the assembler will create this geometry by reading the pixels from your
measurements, and calculate a geometry vector on completion.

This can be configured by setting the p.valid_data_method
to a different ValidDataMethod value.

But you may want to avoid these reads and calculations entirely, in which case you can set
a geometry yourself:

p.geometry = my_shapely_polygon

Or copy it from one of your source datasets when you add your provenance (if it has
the same coverage):

p.add_source_path(source_path, inherit_geometry=True)

If you do this before you note measurements, it will not need to read any pixels
from them.

Generating names & paths alone

You can use the naming module alone to find file paths:

import eodatasets3
from pathlib import Path
from eodatasets3 import DatasetDoc

Create some properties.

d = DatasetDoc()
d.platform = "sentinel-2a"
d.product_family = "fires"
d.datetime = "2018-05-04T12:23:32"
d.processed_now()

Arbitrarily set any properties.
d.properties["fmask:cloud_shadow"] = 42.0
d.properties.update({"odc:file_format": "GeoTIFF"})

Note

You can use a plain dict if you prefer. But we use an DatasetDoc() here, which has
convenience methods similar to DatasetAssembler for building properties.

Now create a namer instance with our properties (and chosen naming conventions):

names = eodatasets3.namer(d, conventions="default")

We can see some generated names:

print(names.metadata_file)
print(names.measurement_filename('water'))
print()
print(names.product_name)
print(names.dataset_folder)

Output:

s2a_fires_2018-05-04.odc-metadata.yaml
s2a_fires_2018-05-04_water.tif

s2a_fires
s2a_fires/2018/05/04

In reality, these paths go within a location (folder, s3 bucket, etc) somewhere.

This location is called the collection_prefix, and we can create our namer with one:

collection_path = Path('/datacube/collections')

names = eodatasets3.namer(d, collection_prefix=collection_path)

print("The dataset location is always a URL:")
print(names.dataset_location)

print()

a_file_name = names.measurement_filename('water')
print(f"We can resolve our previous file name to a dataset URL:")
print(names.resolve_file(a_file_name))

print()

print(f"Or a local path (if it's file://):")
print(repr(names.resolve_path(a_file_name)))

The dataset location is always a URL:
file:///datacube/collections/s2a_fires/2018/05/04/

We can resolve our previous file name to a dataset URL:
file:///datacube/collections/s2a_fires/2018/05/04/s2a_fires_2018-05-04_water.tif

Or a local path (if it's file://):
PosixPath('/datacube/collections/s2a_fires/2018/05/04/s2a_fires_2018-05-04_water.tif')

Note

The collection prefix can also be a remote url: https://example.com/collections, s3:// ... … etc

We could now start assembling some metadata if our dataset doesn’t exist,
passing it our existing fields:

Our dataset doesn't exist?
if not names.dataset_path.exists():
 with DatasetAssembler(names=names) as p:

 # The properties are already set, thanks to our namer.

 ... # Write some measurements here, etc!

 p.done()

It exists!
assert names.dataset_path.exists()

Note

.dataset_path is a convenience property to get the .dataset_location
as a local Path, if possible.

Note

The assembler classes don’t yet support writing to remote locations! But you can use the
above api to write it yourself manually (for now).

Naming things yourself

Names and paths are only auto-generated if they have not been set manually
by the user.

You can set properties yourself on the NamingConventions
to avoid automatic generation (or to avoid their finicky metadata requirements).

>>> p = DatasetPrepare(collection_path)
>>> p.platform = 'sentinel-2a'
>>> p.product_family = 'ard'
>>> # The namer will generate a product name:
>>> p.names.product_name
's2a_ard'
>>> # Let's customise the generated abbreviation:
>>> p.names.platform_abbreviated = "s2"
>>> p.names.product_name
's2_ard'

See more examples in the assembler .names property.

Separating metadata from data

(Or. “I don’t want to store ODC metadata alongside my data!”)

You may want your data to live in a different location to your ODC metadata
files, or even not store metadata on disk at all. But you still want it to be
easily indexed.

To do this, the done() commands include an embed_location=True argument.
This will tell the Assemblers to embed the dataset_location into the
output document.

Note

When indexing a dataset, if ODC finds an embedded location, it uses it in place of
the metadata document’s own location.

For example:

metadata_path = tmp_path / "my-dataset.odc-metadata.yaml"

with DatasetPrepare(
 # Our collection location is different to our metadata location!
 collection_location="s3://dea-public-data-dev",
 metadata_path=metadata_path,
 allow_absolute_paths=True,
) as p:
 p.dataset_id = UUID("8c9e907a-df35-407c-a89b-920d0b24fdbf")
 p.datetime = datetime(2019, 7, 4, 13, 7, 5)
 p.product_family = "quaternarius"
 p.processed_now()

 p.note_measurement("blue", blue_geotiff_path)

 # When writing, embed our dataset location in the output
 p.done(embed_location=True)

Print the header of the document:
output = metadata_path.read_text()
print(output[:output.find('crs:')].strip())

Now our dataset location is included in the document:

Dataset
$schema: https://schemas.opendatacube.org/dataset
id: 8c9e907a-df35-407c-a89b-920d0b24fdbf

label: quaternarius_2019-07-04
product:
 name: quaternarius

location: s3://dea-public-data-dev/quaternarius/2019/07/04/

Now ODC will ignore the actual location of the metadata file we are indexing, and
use the embedded s3 location instead.

Note

Note that we added allow_absolute_paths=True for our own testing simplicity
in this guide.

In reality, your measurements should live in that same s3:// location,
and so they’ll end up relative.

Understanding Locations

When writing an ODC dataset, there are two important locations that need to be known
by assembler: where the metadata file will go, and the “dataset location”.

Note

In ODC, all file paths in a dataset are computed relative to the dataset_location

Examples

	Dataset Location

	Path

	Result

	s3://dea-public-data/year-summary/2010/

	water.tif

	s3://dea-public-data/year-summary/2010/water.tif

	s3://dea-public-data/year-summary/2010/

	bands/water.tif

	s3://dea-public-data/year-summary/2010/bands/water.tif

	file:///rs0/datacube/LS7_NBAR/10_-24/odc-metadata.yaml

	v1496652530.nc

	file:///rs0/datacube/LS7_NBAR/10_-24/v1496652530.nc

	file:///rs0/datacube/LS7_NBAR/10_-24/odc-metadata.yaml

	s3://dea-public-data/year-summary/2010/water.tif

	s3://dea-public-data/year-summary/2010/water.tif

You can specify both of these paths if you want:

with DatasetPrepare(dataset_location=..., metadata_path=...):
 ...

But you usually don’t need to give them explicitly. They will be inferred if missing.

	If you only give a metadata path, the dataset location will be the same.:

metadata_path = "file:///tmp/ls7_nbar_20120403_c1/my-dataset.odc-metadata.yaml"
inferred_dataset_location = "file:///tmp/ls7_nbar_20120403_c1/my-dataset.odc-metadata.yaml"

	If you only give a dataset location, a metadata path will be created as a
sibling file with .odc-metadata.yaml suffix within the same “directory” as the location.:

dataset_location = "file:///tmp/ls7_nbar_20120403_c1/my-dataset.tar"
inferred_metadata_path = "file:///tmp/ls7_nbar_20120403_c1/my-dataset.odc-metadata.yaml"

	… or you can give neither of them! And they will be generated from a base collection_path.:

collection_path = "file:///collections"
inferred_dataset_location = "file:///collections/ga_s2am_level4_3/023/543/2013/02/03/
inferred_metadata_path = "file:///collections/ga_s2am_level4_3/023/543/2013/02/03/ga_s2am_level4_3-2-3_023543_2013-02-03_final.odc-metadata.yaml

Note

For local files, you can give the location as a pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path],
and it will internally be converted into a URL for you.

In the third case, the folder and file names are generated from your
metadata properties and chosen naming convention. You can
also set folders, files and parts yourself.

Specifying a collection path:

with DatasetPrepare(collection_path=collection, naming_conventions='default'):
 ...

Let’s print out a table of example default paths for each built-in naming convention:

from eodatasets3 import namer, DatasetDoc
import eodatasets3.names

Build an example dataset
p = DatasetDoc()
p.platform = "sentinel-2a"
p.instrument = "MSI"
p.datetime = datetime(2013, 2, 3, 6, 5, 2)
p.region_code = "023543"
p.processed_now()
p.producer = "ga.gov.au"
p.dataset_version = "1.2.3"
p.product_family = "level4"
p.maturity = 'final'
p.collection_number = 3
p.properties['sentinel:sentinel_tile_id'] = 'S2B_OPER_MSI_L1C_TL_VGS4_20210426T010904_A021606_T56JMQ_N03.00'

collection_prefix = 'https://test-collection'

Print the result for each known convention
header = f"{'convention':20} {'metadata_file':64} dataset_location"
print(header)
print('-' * len(header))
for conventions in eodatasets3.names.KNOWN_CONVENTIONS.keys():
 n = namer(p, conventions=conventions, collection_prefix=collection_prefix)
 print(f"{conventions:20} {str(n.metadata_file):64} {n.dataset_location}")

Result:

convention metadata_file dataset_location
--
default ga_s2am_level4_3-2-3_023543_2013-02-03_final.odc-metadata.yaml https://test-collection/ga_s2am_level4_3/023/543/2013/02/03/
dea ga_s2am_level4_3-2-3_023543_2013-02-03_final.odc-metadata.yaml https://test-collection/ga_s2am_level4_3/023/543/2013/02/03/
dea_s2 ga_s2am_level4_3-2-3_023543_2013-02-03_final.odc-metadata.yaml https://test-collection/ga_s2am_level4_3/023/543/2013/02/03/20210426T010904/
dea_s2_derivative ga_s2_level4_3_023543_2013-02-03_final.odc-metadata.yaml https://test-collection/ga_s2_level4_3/1-2-3/023/543/2013/02/03/20210426T010904/
dea_c3 ga_s2_level4_3_023543_2013-02-03_final.odc-metadata.yaml https://test-collection/ga_s2_level4_3/1-2-3/023/543/2013/02/03/
deafrica level4_s2_023543_2013-02-03_final.odc-metadata.yaml https://test-collection/level4_s2/1-2-3/023/543/2013/02/03/

Note

The default conventions look the same as dea here, but dea is
stricter in its mandatory metadata fields (following policies within the
organisation).

You can leave out many more properties from your metadata in default and they
will not be included in the generated paths.

Dataset Prepare class reference

Dataset Assembler class reference

Reading/Writing YAMLs

Methods for parsing and outputting EO3 docs as a eodatasets3.DatasetDoc

Parsing

	
eodatasets3.serialise.from_path(path, skip_validation=False)

	Parse an EO3 document from a filesystem path

	Parameters

	
	path (Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) – Filesystem path

	skip_validation – Optionally disable validation (it’s faster, but I hope your
doc is structured correctly)

	Return type

	DatasetDoc

	
eodatasets3.serialise.from_doc(doc, skip_validation=False)

	Parse a dictionary into an EO3 dataset.

By default it will validate it against the schema, which will result in far more
useful error messages if fields are missing.

	Parameters

	
	doc (Dict [https://docs.python.org/3/library/typing.html#typing.Dict]) – A dictionary, such as is returned from yaml.load or json.load

	skip_validation – Optionally disable validation (it’s faster, but I hope your
doc is structured correctly)

	Return type

	DatasetDoc

Writing

	
eodatasets3.serialise.to_path(path, *ds)

	Output dataset(s) as a formatted YAML to a local path

(multiple datasets will result in a multi-document yaml file)

	
eodatasets3.serialise.to_stream(stream, *ds)

	Output dataset(s) as a formatted YAML to an output stream

(multiple datasets will result in a multi-document yaml file)

	
eodatasets3.serialise.to_doc(d)

	Serialise a DatasetDoc to a dict

If you plan to write this out as a yaml file on disk, you’re
better off with one of our formatted writers: to_stream(), to_path().

	Return type

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict]

Name Generation API

You may want to use the name generation alone, for instance
to tell if a dataset has already been written before you assemble it.

EO Metadata API

	
class eodatasets3.properties.Eo3Interface

	These are convenience properties for common metadata fields. They are available
on DatasetAssemblers and within other naming APIs.

(This is abstract. If you want one of these of your own, you probably want to create
an eodatasets3.DatasetDoc)

	
property collection_number: int [https://docs.python.org/3/library/functions.html#int]

	The version of the collection.

Eg.:

metadata:
 product_family: wofs
 dataset_version: 1.6.0
 collection_number: 3

	
property constellation: str [https://docs.python.org/3/library/stdtypes.html#str]

	Constellation. Eg sentinel-2.

	
property dataset_version: str [https://docs.python.org/3/library/stdtypes.html#str]

	The version of the dataset.

Typically digits separated by a dot. Eg. 1.0.0

The first digit is usually the collection number for
this ‘producer’ organisation, such as USGS Collection 1 or
GA Collection 3.

	
property datetime: datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]

	The searchable date and time of the assets. (Default to UTC if not specified)

	
datetime_

	alias of datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]

	
property datetime_range: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime], datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]]

	An optional date range for the dataset.

The datetime is still mandatory when this is set.

This field is a shorthand for reading/setting the datetime-range
stac 0.6 extension properties: dtr:start_datetime and dtr:end_datetime

	
property instrument: str [https://docs.python.org/3/library/stdtypes.html#str]

	Name of instrument or sensor used (e.g., MODIS, ASTER, OLI, Canon F-1).

Shorthand for eo:instrument property

	
property maturity: str [https://docs.python.org/3/library/stdtypes.html#str]

	The dataset maturity. The same data may be processed multiple times – becoming more
mature – as new ancillary data becomes available.

Typical values (from least to most mature): nrt (near real time), interim, final

	
property platform: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Unique name of the specific platform the instrument is attached to.

For satellites this would be the name of the satellite (e.g., landsat-8, sentinel-2a),
whereas for drones this would be a unique name for the drone.

In derivative products, multiple platforms can be specified with a comma: landsat-5,landsat-7.

Shorthand for eo:platform property

	
property platforms: Set [https://docs.python.org/3/library/typing.html#typing.Set][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Get platform as a set (containing zero or more items).

In EO3, multiple platforms are specified by comma-separating them.

	
property processed: datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]

	When the dataset was created (Defaults to UTC if not specified)

Shorthand for the odc:processing_datetime field

	
processed_now()

	Shorthand for when the dataset was processed right now on the current system.

	
property producer: str [https://docs.python.org/3/library/stdtypes.html#str]

	Organisation that produced the data.

eg. usgs.gov or ga.gov.au

Shorthand for odc:producer property

	
property product_family: str [https://docs.python.org/3/library/stdtypes.html#str]

	The identifier for this “family” of products, such as ard, level1 or fc.
It’s used for grouping similar products together.

They products in a family are usually produced the same way but have small variations:
they come from different sensors, or are written in different projections, etc.

ard family of products: ls7_ard, ls5_ard ….

On older versions of Open Data Cube this was called product_type.

Shorthand for odc:product_family property.

	
property product_maturity: str [https://docs.python.org/3/library/stdtypes.html#str]

	Classification: is this a ‘provisional’ or ‘stable’ release of the product?

	
property product_name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	The ODC product name

	
property region_code: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	The “region” of acquisition. This is a platform-agnostic representation of things like
the Landsat Path+Row. Datasets with the same Region Code will roughly (but usually
not exactly) cover the same spatial footprint.

It’s generally treated as an opaque string to group datasets and process as stacks.

For Landsat products it’s the concatenated {path}{row} (both numbers formatted to three digits).

For Sentinel 2, it’s the MGRS grid (TODO presumably?).

Shorthand for odc:region_code property.

Misc Types

Index

 C
 | D
 | E
 | F
 | I
 | M
 | P
 | R
 | T

C

 	
 	collection_number (eodatasets3.properties.Eo3Interface property)

 	
 	constellation (eodatasets3.properties.Eo3Interface property)

D

 	
 	dataset_version (eodatasets3.properties.Eo3Interface property)

 	datetime (eodatasets3.properties.Eo3Interface property)

 	
 	datetime_ (eodatasets3.properties.Eo3Interface attribute)

 	datetime_range (eodatasets3.properties.Eo3Interface property)

E

 	
 	Eo3Interface (class in eodatasets3.properties)

F

 	
 	from_doc() (in module eodatasets3.serialise)

 	
 	from_path() (in module eodatasets3.serialise)

I

 	
 	instrument (eodatasets3.properties.Eo3Interface property)

M

 	
 	maturity (eodatasets3.properties.Eo3Interface property)

P

 	
 	platform (eodatasets3.properties.Eo3Interface property)

 	platforms (eodatasets3.properties.Eo3Interface property)

 	processed (eodatasets3.properties.Eo3Interface property)

 	processed_now() (eodatasets3.properties.Eo3Interface method)

 	
 	producer (eodatasets3.properties.Eo3Interface property)

 	product_family (eodatasets3.properties.Eo3Interface property)

 	product_maturity (eodatasets3.properties.Eo3Interface property)

 	product_name (eodatasets3.properties.Eo3Interface property)

R

 	
 	region_code (eodatasets3.properties.Eo3Interface property)

T

 	
 	to_doc() (in module eodatasets3.serialise)

 	
 	to_path() (in module eodatasets3.serialise)

 	to_stream() (in module eodatasets3.serialise)

 nav.xhtml

 Table of Contents

 		
 EO Datasets 3

_static/file.png

_static/minus.png

_static/plus.png

